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I. Introduction 

The word "study"* which appears in the title of this report may 
be regarded as a reflection of the fact that there are more questions 
raised here than answers given. This work is a byproduct of my frus- 
trating effort to understand several reports on the subject of non- 
linear resonances. More specifically, the central question raised 
in this report is on the precise meaning of "width" of an isolated 
nonlinear resonance when the concept of "width" and its specific 
values are used to discuss the stability of beams in particle accel- 
erators and storage rings. In raising this question, I am well aware 
of a definite possibility of being regarded as unnecessarily fussy. 
Many people would undoubtedly agree with Alex Chao who says 

"One should not, however, take the definitions of resonance 
width too seriously since they are not rigorously defined 
quantities and serve only as order of magnitude concepts." 1 

I do not necessarily agree with this statement but it certainly is 
not important to have a difference of, say, a factor two or IT as long 
as one is consistent in the use of resonance width and, far more im- 
portant, as long as the physical meaning of the definition is clear 
and reasonable. I must confess that my frustration is caused at least 
partially by the carelessness I see in some reports. 

* 
"a careful examination or analysis of a phenomenon, development, 

or question;" - Webster's Dictionary - 
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II. Resonance Width and Stable Region in Phase Space 

We start with the case for which there should be very little 
ambiguities in principle. Consider a linear ring, that is, a ring 
with dipole and quadrupole fields only. Furthermore, assume that the 
ring is made of two identical. superperiods. When the betatron 
tune v" of this machine is near an integer plus 0.5, it varies almost 
linearly as a function of the quadrupole current IQ for a fixed beam 
momentum. This is schematically shown in Fig. 1. 

N+O. 

The motion is stable regardless of the magnitude of. beam emittance as 
long as the beam pipe is large enough to take care of the (finite) 
beam size everywhere around the ring. Now introduce a quadrupole 
somewhere in the ring and excite it at a certain level. The tune v 
as a function of the quadrupole current I Q is then quite different 
from the unperturbed case, again as shown in Fig. 1. As the current 
approaches a certain value I 1' the tune increases toward (N+0.5) and 
the beam becomes unstable. The maximum beam size is theoretically in- 
finite regardless of the size of emittance. When the current IQ 
reaches I 2' the stability of the beam is recovered and the tune varies 
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again more or less linearly with I 
a' 

The "stopband width" of linear 
resonance 2u = 2N + 1 is then 8v"- as shown in Fig. 1. Operation- 
ally, it may be less ambiguous to define the width in terms of the 
gap in IQ, that is, AI Q . However, even the perturbed tune v is quite 
linear in I 
6 v" . 

Q 
and there is no difficulty in translating from AI 

Q to 
The most important feature of linear resonances when compared 

to the nonlinear ones is that the entire phase space is either stable 
or unstable and the beam emittance does not enter in the definition 
of the resonance width. 

Nonlinear resonances are not much more complicated than the linear 
ones when only one degree of freedom is involved and the resonance 
under consideration is isolated. The two-dimensional phase space is 
divided into two parts, the central area in which the motion is con- 
fined and the outer area where the amplitude of motion may or may not 
be finite. Fig. 2 is an example of the fourth-order resonance, 4u = 
an integer + s, where coordinates are suitably normalized such that 
the beam is represented by a circle when the nonlinear field is turned 
off. 

I 

Fig. 2 

For E = 0, exactly on the resonance, there is no central stable area. 
The "width" of resonance is defined as the range of v for which the 
central area is less than the beam emittance so that, if the tune is 
within this range, part of the beam may become unstable. There are 
of course variations in the definition: for example, one may define 
the width as the range of E instead of the range of v. In place of 
the area of the central stable region, one may prefer to use either 
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TrR 2 or TR 2 
1 2 ' the former giving a smaller value and the latter a 

larger value as the width compared to the standard difinition given 
above. These variations are not important as long as one is consis- 
tent in the definition when one tries to compare two or more cases. 
The size of the resonance width now clearly depends on the beam emit- 
tance E and this dependence becomes stronger as the order of reso- 

* nace n for nv = N increases. 

The picture becomes rather comlex when two degrees of freedom 
are involved in nonlinear resonances. In what follows, for the sake 
of simplicity of treatment, the so-called "shear terms" or "phase- 
independent terms" in the Hamiltonian are ignored. These terms arise 
from magnetic fields of octupole, 12-pole, 16-pole, etc. averaged 
around the ring. One may argue that, in a real machine, this is not 
too unrealistic since one should try to have a correction system that 
will eliminate at.least the average octupole field. On the other hand, 
by ignoring the shear terms, one loses the most important property of 
nonlinear oscillations, the dependence of tunes on the oscillation am- 
plitudes in the lowest-order approximation. This causes difficulties 
in trying to understand multi-resonance effects (see the next section). 
Another simplification introduced here is to limit the discussion to 
sum resonances only, that is, resonances of the form 

ltl=V 
1 

+ n*v2 = k (mdnn) 

with both m and n positive, m+n>2. It is well-known that, 
for difference resonances men < 0, oscillation amplitudes are always 
finite. Consequently, any definition of resonance width would neces- 
sarily require an arbitrary parameter such as the maximum allowed 
amount of energy transfered from one direction to the other. 

There are several reports 2-9 on the subject of the width of non- 
linear coupled resonances. The one by Sturrock2 is somewhat unortho- 
dox in its formalism but I have found it to be extremely valuable. 
A detailed discussion on coupling resonance is given for vl + 2v2 = k 

* The width is proportional to /Enm2 . 
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but the method can be applied in principle to any other resonances. 
(It is hard for me to understand why this report and the one by 

Lysenko3 are often ignored by others in the discussion of nonlinear 
resonances, especially in view of the fact that both are published 
papers and not informal laboratory reports.) A statement made by 
Sturrock (page 178 of ref. 2) is probably more responsible than any- 
thing else for arousing my interest in the subject: 

"The most surprising feature of the stability diagram of 
Fig. 28 is that there are points of arbitrarily small 
amplitudes u, v, which lie outside the stable region." 

This is equivalent to saying that, for a beam of very small emit- 
tances, the width of resonance can be very large if the ratio of two 
emittances satisfies a certain condition. Particles in the central 
area of a beam can then become more unstable compared to those in the 
outer area which is hard to understand. I am not sure if this state- 
ment has been questioned by someone: Lysenko3 has given the correct 
picture of the resonance ul + nv2 = k (Fig. 4 of ref. 3) but he 
does not explicitly point out the error made by Sturrock. Recently, 
Guignard at CERN has worked out a quite general treatment of all sum 
and difference resonances in a three-dimensional (compared to the 
usual two-dimensional) magnetic field. 9 According to this work, "a 
bandwidth inside which the amplitudes can become infinite" can be 

* 
written as 

Ae Q: E1 
b-2)/2 

E2 
(n-2) /2 [m2E2 + n2El] (1) 

for resonance m-v1 + n-v2 = k where El and E2 are the initial ernit- 
tances of the beam in two directions. This expression seems to be 
widely used at CERN as the bandwidth, especially in works related to 
the beam storage problems. The more detailed form of width is not 
really important for the present purpose except for the fact that it 
is linearly dependent on the strength of the field that is responsible 

* Eq. (2.6.2) of CERN-ISR-MA/75-35 or Eq. (6.17) of CERN 78-11, 
both of ref. 9. 
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for the resonance and that, by applying this expression to uncoupled 
resonances, one can easily see that it corresponds to the choice of 
ITR l2 ( see Fig. 2) being equal to the beam emittance. The difinition 
of the bandwidth should therefore be "inside which the amplitudes al- 
ways become infinite regardless of the initial phases". Again this 
is simply a matter of one's preference and we should only be aware 
of the physical meaning of this definition in applying the formula 
for some practical cases. A more serious defect of this expression 
is that, for either m (or n) = 1, the bandwidth increases indefi- 
nitely as El approaches zero while E2 is fixed. This is schematically 
shown in Fig. 3. 
This unphysical property of Eq. (1) 
is related to the erroneous state- 
ment made by Sturrock (see p. 5) 
for resonance vl + 2v2 = k. This 
point has been examined recently6 
and the following is a summary of 
my present understanding. Related 
material can also be found in ref. 
4 for resonances 2~1 + 2v2 = k 
and 9 + 3v2 = k. 

Fig. 3 

In terms of the action-angle variables (I, a), the Hamiltonian 
for an isolated resonance m-v1 + n-v2 = k + E is, in the absence of 
shear terms, 

= (&l/2)(211) + (~~/2)(21~) + D~cos(~)(211)m'2(212)n'2 (2) 
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where $ ,= meal + n=a2 + 6. The amplitude D and the phase 6 of 
the driving term can be expressed, in terms of the machine parameters 
and the parameters of the nonlinear field which is driving the reso- 
nance. With the nearest point (vlo,v20) on the resonance line, we 
have m'vlo + n*uZo = k, vls vlo + ~1 and v2 3 v20 + E2. Since 
H does not depend on the independent variable 9 explicitly, it is an 
invariant of the motion. In trying to define the width of resonance 
with two degrees of freedom, one may follow an idea used for one 
degree of freedom. There one finds unstable fixed points and equate 
the distance of these points from the origin in phase space to the 
beam emittance. This is equivalent to saying that the beam ernittance 
is equal to lrft12 in Fig. 2. Analogous to the concept of unstable 
fixed points in the two-dimensional phase space, one defines "fixed 
lines"* in the four-dimensional space from the three conditions, 

dIl/dB = d12/dB = d$/df3 = 0. 

Since the beam emittance Ei and the action variable Ii are related, 

E1 = 0211)' E2 = ~(21~)' 

these three conditions for fixed lines lead to Eq. (1)' Guignard's 
formula for the bandwidth, in a straightforward manner. To me, this 
is somehow more reasonable way to derive the expression than the 
one given by Guignard (pp. 32 - 37, CERN 78-11). In the case of two- 
dimensional phase space, one can see pictorially that the use of un- 
stable fixed points is physically reasonable in defining the width of 
resonance. It is not so obvious in four-dimensional phase space; one 
must have some other independent assurances that it is physically 
meaningful to relate the fixed lines with the beam emittances to 
define the bandwidth. When this is done, as in ref. 6, one finds 
that resonances of the form v1 + n*v2 = k .are different from other 
resonances in their behavior in phase space and this difference can 

* The term "fixed lines" was used by A. Ruggiero in his report' on 
beam-beam interaction. 
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account for the paradoxical results obtained by Sturrock and by Guignard. 
In this connection, the work by Ruggiero on two-dimensional beam-beam 
interaction 8 is quite intriguing. Of course his main concern was not 
a general treatment of nonlinear resonances but rather the special 
characteristics of beam-beam interaction and the stochasticity limit 
of stability (see the next section) arising from this interaction. In 
schematically showing the pictures in phase space (Figs. la and lb on 
p. 12 of FN-258)' he must have been aware of the special feature of 
resonances v1 + n=v2 = k. On page 11 of FN-258, there is a state- 
ment 

"The other case with /qol< 1 will be considered later." 

Unfortunately, the promised consideration does not materialize in the 
report. It should also be mentioned that the condition Iq,l < 1 is 
not completely equivalent to the condition m (or n) = 1 in m-v1 + 
n-v2 = k. 

From equations of motion for 11 and I2 with the Hamiltonian (2) 
on p. 6, one sees that 

c = (211)/m - W2) /n (3) 

is another invariant of the motion. From H and C, one can con- ALc _ 
struct, with a suitable normalization of variables, 6 two invariants 
of the form 

x = u2 + urn vn w, 

2 mn u =v +u v w. 
(4) 

Two amplitudes u and v are proportional to 411 and AI2 , respec- 
tively. For physically meaningful solutions, one must have 

u 3 0, v b 0, and [WI 4 1. 

All nonlinear resonances ( m + n >/ 3, m 4 n) can be classified to two 
groups, one with m # 1 and the other with m = 1. 
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1)mfl. The lowest-order resonance of this group is 2'Vl + 2'V2 
= k. For any resonance of this group, the function w(u) has only 
one minimum value (and no maximum value). 
is larger than 

If the minimum value w(u,) 
-1, the motion is unstable since u can take any 

value within I4 41. For w(uM) < -1, a stable motion is possible 
and the limiting case, shown in Fig. 4a, corresponds to W(UM) = -1. 

1 

0 

-1 

IW 

I I 

I U 
0 % 

b 
V 

1 
2vl + 2v2 = k 

U 

Fig. 4a Fig. 4b 

When the initial amplitude is less than or equal to u. in Fig. 4a, 
the motion is stable regardless of initial values of two phases al 
and a 2' If, on the other hand, the initial value of u: exceeds uM, 
the motion is unstable independent of phase. In between, the initial 
phase (or more specifically, the combination m*al+n*a2) will deter- 
mine whether a stable motion is possible or not. Of course the value 
of the other.amplitude v cannot be arbitrary in order for the motion 
to be stable and the limiting boundary in (u, v) space looks like the 
one shown in Fig. 4b for 2-v 1 + 2.v2 = k. (The picture is identical 
to Fig. lb of FN-258, ref. 8.) Here the curve Cl is the limiting 
relation for (uo, vo) and C2 for (u M' vM). From the nature of (u,, 
yM) ' it is obvious that the curve C 2 is identical to Eq. (l), the 
bandwidth of Guignard. In terms of (uM, vM), the relation is 
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(m/2)*uMm-2 vMn + (n/2)=uMm vMnW2 = 1 (5) 

which takes a particularly simple form 

for 2=vl + 2*v2 = k. In general, it is not possible to write down 
an algebraic expression for the curve C 

4 1 ( u oJvo) although even this 
can be done for the lowest-order case in Fig. 4b. The relation is 

V2 
0 

= (1 + 3u02) - J (1 + 3u02)2 - (1 - uo2)2. 

2) m = 1. The lowest-order resonance of this group is vl + 2.v2 

= k. In addition to the one shown in Fig. 4a, there is another type 
of limiting case with one minimum and one maximum points. This is 
shown in Fig. 5a. It should be noted here that, in (A, y) space, the 
situation depicted in Fig. 4a corresponds to A >/ 0 and 1-1 > 0 while 
the one in Fig. 5a is for A < 0 and 

T W Fig. 5a 

-1 IF - ----- ---- - I , : 1 0 
Y 
U uM 0 

p > 0. 

b u+nv =k 1 2 4 

Fig. 5b 

If one considers the case given in Fig. 4a, (u,, vM) still satisfy the 
relation (5) and, with m = 1, the curve C2 must pass the origin u = v 
= 0. This is shown in Fig. 5b where C2 includes the dotted curve 
past point P' to the origin. Points above this curve are supposedly 
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unstable. They can be as close to the origin as one wishes and the 
indefinitely increasing bandwidth is a direct consequence of this 
behavior. Another way of seeing the same feature is to insist that 
X must be positive (as Sturrock did). Since this condition must be 
valid for any value of w including w = -1, positive X for m = 1 
means u>v n which again eliminates points near the origkn from 
the stable area. By including the case in Fig. 5a, one can show that 
the true boundary C2 is the solid curve in F&g. 5b. Any motion that 
starts from the curve C 1 cannot go beyond the curve C2 and is limited 
to the right of point P. Points between P and P' can be reached if 
the motion starts from points between P' and PO. 

Once the boundaries Cl and C2 are found, either algebraically or 
numerically, the bandwidth can be evaluated by putting the beam within 
Cl ("TRAY" version in Fig. 2) or C2 ("*R12" version in Fig. 2). De- 
pending on the particle distribution in (u, v) space,* one may take 

u,<A and v 4 A/cl 

as in Fig. 6a or 

U2 + ci2*v2 < A2 

as in Fig. 6b with a and A specifiying the beam size. 

V 

Fig. 6a Fig. Sb 

*Distributions are assumed to be uniform in phases. 
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For distributions with a long tail, e. g., Gaussian, one must of 
course specify the fraction of the beam defined by a and A. For 
some cases, it may be more reasonable to assume that the resonance 
is adiabatically turned on and the bandwidth should be evaluated by 
equating the phase space volume bounded by u = 0, v = 0 and the 
curve C 1' Strictly speaking, this is an underestimate of the allowed 
volume (which leads to an overestimate of the bandwidth) since the 
beam may occupy the region between Cl and C2 for some phase values. 
The four-dimensional volume is 

V - ////dx dx' dy dy' = lldEl dE2 

= Eo2/u if El <E o and E2 4 Eo/y 

= Eo2/ (2~ 1 if El + W2 d E. l 

The volume is proportional to the integral 

IJd(u2)*d(v2) (6) 

where the integration is over the region bounded by u = 0, v= 0 
and Cl. I have found out that this can be done analytically for vl + 

2v2 and 2~1 + 2v2. The resulting bandwidths agree reasonably well 
with the estimate given by Collins and Edwards 7 ( see the table on p. 
18 of ref. 7). For other resonances considered by them, that is, vl 
+ 3v2, vl+ 4v 2 and 2~1 + 3v2, I must confess I do not understand 
how they obtained the results. To begin with, it is impossible for me 
to find an algebraic expression for the curve Cl. I may resort to 
some numerical integration; it is quite possible that results given 
in ref. 7 are based on numerical evaluations. The trouble I get into 
is that I cannot even prove'whether the integral (6) converges or not 
for vl + 3v2 and vl + 4v2. For 2vl + 3v2, it is possible to show 
that the integral is at least finite since the same integral over the 
region bounded by C2 (instead of Cl) is finite. It should be noted 
again that the curve C2 (for m = 1, beyond the point P' in Fig. 5b) 
is given algebraically by Eq. (5) and the integral (6) with C2 as a 
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boundary is relatively simple. Although this integral definitely 
diverges for vl + 3v2 and vl + 4v2 , it may still converge if 
the boundary is Cl instead of C2. The only choice I have is either 
to stick with nonadiabatic definitions (Figs. 6a and 6b) or to use 
the results given in ref. 7 without really understanding how they 
came about. Considering the reputation of the authors, one might 
even argue that the latter choice issnot at all:-unreasonable. 

III. Resonance Width for the Overlap Criterion of Chirikov 

According to an early report by Chirikov, Keil and Sessler,l' 
the famous overlap criterion of Chirikov first appeared in early 
60's. Since then, there have been numerous reports on the subject 
but the best and presumably the most authoritative is the one written 
by Chirikov recently. 10 For a quick explanation of the criterion, 
one may look up one of the following: 

1. p. 5 - 9, ref. 11 p. 
2. p. 23, ref. 8 
3. p. 9 (ISR-TH/72-25)' ref. 13 
4. p. 4 - 5, ref. 12 p. 

When nonlinear motions of a periodic system are plotted in phase space, 
there are in general three types of orbits as shown in Fig. 7 (see p. 
14) which is taken from ref. 16. Two dots P and P' represent periodic 
orbits with rational tune values. Two continuous lines A and B are 
the examples of KAM surfaces. Since these suMaces are "impenetrable", 
the motion of particles bounded by the KAM surfaces is stable, that 
is, the oscillation amplitude is always finite. However, the phase 
motion in this region is seemingly random and the region is therefore 
called "stochastic layers". As one can see in Fig. 7, stochastic 
layers are prominent near separatrices. Chirikov calls stochastic 
layers an?"embryo" of instabilities since instabilities generally de+ 
velop from these layers. One of the fundamental problems in nonlinear 
dynamics is to find, for a given system, the limiting strength of non- 
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J. M. Greene, PPPL-1489 (Princeton Plasma Laboratory), Nov. '79 -. - 
..:.*. ,.*.. 
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Fig. 7: 

liner field above which no KAM surfaces exist and the entire phase 
space becomes stochastic. The only theoretical guidance we have for 
this is the overlap criterion of Chirikov. Very simply stated, it 

conjectures that the motion becomes totally stochastic when the area 
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covered by all resonances in a square region in the tune diagram * 

becomes unity. The total area is obtained by summing all resonance 
widths. 

One can raise many questions regarding this criterion, especially 
on how to use it in real problems. Chirfkov himself admits 10 : "The 
only excuse the overlap criterion may offer is that today any other 
theory is also incapable to answer the question . .." At the same time, 
he feels that it is “substantiated by plausible (at least, for a 
physicist!) considerations." It is undoubtedly "an order-of-magnitude 
estimate", again Chirikov's admission. One may just leave it at that 
except for the fact that many accelerator physicists have tried to 
find quantitatively the limiting strength of beam-beam interaction 
in storage rings based solely on this criterion. This may be par- 
tially justified; some numerical studies made for a few examples have 
shown that the criterion is a surprisingly good one even in quanti- 
tative sense. A more comprehensive discussion on the overlap criteri- 
on and its proper use is clearly beyond the intended scope of this 
report. I might just mention in passing that its popularity among 
accelerator physicists does not seem to be as much as it used to be 
only a year or so ago. In spite of inherent difficulties in any 
quantitative use of the criterion, and there are many, I cannot agree 
with Alex Chao (see p. 1) when he advises us not to take the defini- 
tion of resonance width too seriously. Let me emphasize again that 
I am not fussing over a factor of two or TT. What I do care strongly 
is that, when a value of resonance width is used for any purpose, the 
definition of width should be physically meaningful and everyone should 
be able to understand clearly what it really is. It is very frustra- 
ting for me to encounter several pages of complex mathematical expres- 
sions and numbers before I understand clearly what is calculated. 
Regardless of how one defines the width in connection with the over- 
lap criterion, it must be a quantity one can evaluate for isolated 
resonances. This is unfortunate but unavoidable: unfortunate as the 
criterion is needed most for cases in which many resonances overlap 
*V 1 from N to N+l, v2 from N to N+l. 
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so that the very concept of an isolated resonance loses its validity, 
unavoidable since the assumption of isolated resonances is essential in 
almost all cases for an analytical treatment of nonlinear resonances. 
Furthermore, the width is calculated in the lowest-order approximation. 
This means the width is always linearly proportional to the strength 
of resonance-driving field. 

Let me begin by quoting a passage from Chirikov (p. 287 of ref. 
10) I 

"A plausible condition for the occurrence of the stochastic 
instability seems to be the approach of resonances down to 
the distance of the order of a resonance size. Such an ap- 
proach was naturally called the resonance overlap. To be 
precise, the overlap of resonances begins when their sepa- 
ratrices touch each other." 

After reading this (and nothing else in the report), one may very well 
be tempted to identify the width to be used for the overlap criterion 
with the one discussed in the previous section. 14 Judging from what 
he says elsewhere in the same paper, I am inclined to say that this 
is completely wrong, or more specifically, that this is not in agree- 
ment with the physical picture-Chirikov must have had in mind when he 
proposed the criterion. Still, I must confess I lack the conviction 
which is necessary to declare that such an identification of the width 
is totally devoid of any redeeming feature. In what follows, I will 
try to summarize simply but clearly Chirikov's definition of the reso- 
nance width so that we can cmpare that with other definitions used by 
various accelerator physicists. 
from Chirikov. 10 

There will be many direct quotations 
They are made whenever I feel my rephrasing may cause 

misunderstandings or when Chirikov's true intention may be subject to 
individual reader's interpretation. 

Chirikov emphasizes one particular feature of nonlinear oscilla? 
tions as something very significant. It is the dependence of the os- 
cillation frequency (tune) on the oscillation amplitude (energy). On 

P* 266, he says 
"A significant feature of the nonlinear resonance is the 

oscillation boundedness and smallness under a small per- 
turbation as distinct from the linear resonance for which 



- 17 - 

there is no such boundedness. The oscillations are bounded 
due to the dependence of their frequency on the energy. 
Such a dependence is, thus, an important property and the 
first sign of an oscillator nonlinearity." 

On p. 268, under a title "What are nonlinear oscillations?", 
"We will expose the most important property of the non- 

liner oscillator, the so-called non-isochronicity, i.e., 
the dependence of the free oscillation period on the 
amplitude, or the energy." 

As a measure of the degree of nonlinearity, he defines a parameter a 
in terms of the action variable I (P= 269), 

I dv a E -- 
V dI 

(7) 

which is in general a function of I (but not of the angle variable). 
After excluding all questions related to the influence of dissipa- 
tion, he states (p. 266) 

"Another essential restriction of the models in question 
is a limitation of the oscillation nonlinearity from 
below, that is we assume the nonlinearity to be not 
too small. . . . . As far as a theoretical analysis and 
estimates are concerned we have also to confine ourselves 
to the usual case of a small perturbation acting upon 
a system whose motion is known." 

Notice the very important difference between "not-so-small" non- 
linearity and a "small" perturbation. This iS explained more 
explicitly on p. 270: 

"(A version of perturbation theory) is applicable, of 
course, only if there is a small parameter. According 
to this we assume that the Hamiltonian of our system 
may be divided into two parts: 

WI, a) = Ho(I) + sV(1, a) (2. 9)* 
the first of which describes an "unperturbed" system 
and has an integral of motion I (the action). The 
main "property"- of2.the unperturbed system is our com- 
plete knowledge of its motion. Our problem is, however, 
to study the motion of a "perturbed" system with the 
Hamiltonian H(I, a), and we assume the "perturbation" 

* Chirikov uses the symbol 0 as the angle variable which I changed 
to a here to avoid a possible confusion. 
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EV(I, a) to be small ( e<<l). A characteristic feature of 
the perturbation is the dependence of the latter on the phase 
a of the unperturbed motion. This very dependence leads to 
a change in the unperturbed action I." 

(I apologize for these lengthy quotes; it is only hoped that, by citing 
all these passages, I am making it clear that I believe the under- 
lying idea of Chirikov is essential to his thinking and to his overlap 
criterion.) Combining requirements .for- "not-too-small" nonlineari- 
ty, a small perturbation and isolated resonances altogether, Chirikov 
writes (p. 279) 

E << a << E -~(Av/v~)~ 

where v 
0 

is the tune on the resonance under consideration and Av is 
the distance from the actual tune v to other resonance lines. The 
second of two inequalities here is clearly for the condition, of iso- 
lated resonances. It is instructive to see how Chirikov derives his 
resonance width. We will consider a very simple uncoupled resonance 
3v = k in the presence of sextupole and octupole fields. One can 
find the formalism on p. 278 - p. 279 of ref. 10 under the title "A 
universal description of a nonlinear resonance". * 

In terms of action-angle variables (I, b), the Hamiltonian is 

H(I, b; 0) = Ho(I) + Hl(1, b), 

Ho(I) = vdb I + ro(21)2, 

(8) 

HILW = D (21)3'2cos(3b - k0). 

The angle variable b here is related to a in Eq. (2) by the rela- 
tion 

b = a + (k/3)8 

and the phase 6 of the driving term is assumed to be zero. The term 
r. (21) 2 in H 

0 
is the shear term (phase-independent term) arising from 

the octupole field. In the absence of the driving term, D = O,.the 

* While I was preparing this note, Fred Mills told me that the identi- 
cal concept was introduced by Symon and Sessler many years ago and he 
himself worked out a number of relations although they have never been 
published. 
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tune is a function of the action variable, 

v. (1) = db/d0 = aHo/ = voo + (4ro)(21) (9) 

where I is a constant of the motion, that is, the system is integra- 
ble. The parameter a, Eq. (7), to specity the nonlinearity is then 

c1 s (~/~,)(av~/a~l = U3~o) WV,) (10) 

A generating function is now introduced, 

F(I, $;0)- - (I - I,)+$ + k0)/3 (11) 

for transforming from (I,..b) to (p, Cp) with Ir to be specified later. 
Obviously, 

b = - aF/aI = (9 + kg)/3, 

P= - aF/a$ = (I - 1,)/3. 

The new Hamiltonian is 

K(P,$M) i H + aF/ae = H - kp 

= Ho(Ir) + 3p[vo(Ir) - k/33 + 36rop2 + D(21r)3'2cos$ 

In deriving this, it is assumed that IPI r << I and only the lowest- 
order term is retained in the small driving term. The choice of Ir 
is now obvious; it is made such that the term linear in p vanishes, 

V - k/3 
(21r) = - oo4r 

0 
(12) 

We assume that r. is positive so that voo < k/3. The choice (12) is 
equivalent to saying that, when D = 0, the tune would be exactly 
on resonance at I = I r' As a result, we have 
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where 

K(p,$;e) = p2/(2M) + ~Y(I~bcos(4d I+ const.] 

M-l = 72 r. = 9 (avo/aI), 

E = (6D/k) (21r)1'2, WI,) = V$Ir)'Ir 

(13) 

The form (13) is familiar to accelerator builders as the Hamiltonian 
for a stationary RF bucket above transition. 15 The angular frequency 
of a small-amplitude phase oscillation is 

9) = &V/M) = 3v,(I,) l Jm. (14) 

The equation for the separatrix is 

IPs($)J2 = 4M=sV(Ir).sin2($/2) (15) 

so that, on the separatrix, 

I E Ir + 3*Ps(0) 

Ir i 6d*[M~V(1,)1 l sin( 3b = - ke ) 
2 . 

At this point, Chirikov says (p. 279, ref. 10) "The amplitude of phase 
oscillation (AI)r may be called the resonance half-width (in I).", 

(AI)r - 6JMV (II) 3 = 24(&/a) l Ir (16) 

"The resonance half-width in frequency is equal to", Chirikov continues, 

(Av)~ - (AI)r* (avo/aI) = (2/3)w4 = 2vo(Ir)&& (17) 

It is quite clear from this definition, Eq. (17), that the resonance 
width Chirikov talks about has nothing to do with the one considered 
in the previous section , the one related to the beam emittance. This 
becomes clearerrif one writes (AI), and (Av), in terms of ro, D and 

l&l f lvoo - k/31: 



- 21 - 

(AI) r = (1/4)*dB ro-5'4]6v13/4 , 

Uv) r = 2.45 ro-l'41&v13/4 . 

(18) 

(19) 

Note that the dependence of (Av), on the strength of shear term, r 
is rather weak but this is not the case for (AI)r. 0’ 

The assumption 
IPI <<I r needed to derive the Hamiltonian K on p. 19 is equivalent 
to the condition of "not-too-small" nonlinearity, &<<a (see p. 18)* 
and this can be expressed in the form 

D2 <<.~o-lhJl (20) 

It is important, I believe, that the unperturbed Hamiltonian Ho 
has shear terms ( r. # 0 ). Otherwise, it is not clear to me how 
one can define the resonance width in accordance with the spirit of 
Chirikov. Since the system is completely integrable, the existence 
of shear terms introduces no added mathematical difficulty. In other 
words, there is no excuse of dropping shear terms from the Hamiltonian 
unless they are truly absent in the system under consideration. 

We are now ready to examine how various accelerator physicists 
interpreted the resonance width that should be used for the overlap 
criterion of Chirikov. The identification of the width with the one 
discussed in the previous section has been mentioned already. We 
start with the report by Chirikov, Keil and Sessler. l2 As one 
naturally expects from the fact that Chirikov himself is one of the 
authors, the definition of resonance width is identical to what has 
been discussed above. The importance of "not-too-small" nonlinearity 
parameter a (see p. 17) in the formalism is properly stressed and 
the overlap criterion is applied to four examples. However, there is 
a section (which consists of just thirteen lines) called "the third 
model" in which they attempt to deal with a case with very small non- 

* The other inequality on p. 18, the one for an isolated resonance, 
is equivalent to II resonance half-width (Av) much less than the 
distance from the actual tune to resonances &her than 3v = k:". 
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linearity. The dependence of v on I arises only as a result of the 
small perturbation and a is of the order of E, the small perturbation 
parameter. I simply do not understand the argument they present here; 
it is impossible to apply what they are saying (i.e., what I believe 
they are saying) to our example with the shear term r. = 0. It is 
true that one can still define the effective tune 'eff in the form 

k/3 - veff = { d$ 

I4 - 3DJz cos (4) (21) 

where dv 5 voo-k/3<0. The integral can be done analytically 
if one assumes that D is sufficiently small and I = constant, 

Veff(I) = k/3 - /(SV)~ - 9D2(21) . (22) 

Note that the expression is exact at I = 0 (where 'eff = '00 ) and 
at I=1 r (unstable fixed points, 4Er = /6v1/(3D)., where veff = 
k/3). One might try to evaluate av/aI near unstable fixed points 
since the stochastic layer is there. Unfortunately, this quantity di- 
verges near unstable fixed points as shown in Fig. 8. I believe it is 
significant that, although they compare the theoretical predictions 
with numerical simulation results for three other examples, nothing 
further is mentioned in the report on this third model. 

Fig. 8 

t 
V eff 

8 
I 
: I 
Ir 



- 23 - 

Essentially the same argument on the resonance width is, given by 
Keil in his report on beam-beam interaction (the second of ref. 13).* 
In the equation of motion for phase, he retains the average (shear) 
term only saying it is bigger than any other (phase-dependent) terms. 
For those who care to look up his report, the following "translation" 
of symbols would be useful to compare his formulas with ours. Symbols 
on the left are Keil's and those on the right are ours: 

P + 3, q + 0, r-+-k, $ + b, x-+-d) 

x' + de/de (- p/M), IDI + 36roD(21r)3'2 

His full-width of resonance 6Q,, 

6*X 
= (8JZ/.rrIpl)*ID11'2 (23) 

contains an extra factor (~/IT) compared to our Gus, Eq. (17). 
This came about as Keil demanded that one should take the maximum 
height of the rectangle with the same area as the stationary RF bucket. 
The factor is of course not essential for the present discussion. 
After deriving Eq. (23), Keil makes the following statement which 
may or may not have received Chirikov's blessing: 

"This method of calculating the width of non-linear 
resonances is applicable when (the‘shear.terms) are 
not small. %...... A method for calculating the 
resonance width in (cases when the shear terms are 
small) is shown in the Appendix." 

(Here I have rewritten the parts within brackets to make the statement 
understaii&ib-le without introducing a lengthy explanation of his nota- 
tions.) This is certainly a bold jump (to me) since he is trying to 
extend the concept of resonance width to cases for which the under- 

* One cannot help noticing a certain sloppiness in his formalism. Two 
different quantities, (r and T, are used as the independent variable in 
two transverse directions, respectively. On p. 3, he says IIHere we 
have assumed that all the primes mean the same thing, or alternatively 
that da/d-r = 1. This implies that we have removed the strong focusing 
wiggle from the calculation at this point." It is of course possible 
to do it exactly. For example, see Appendix A of ref. 8. 
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lying ideas of Chirikov may not be valid. In the following, I will 
try to reproduce his arguments,given in the Appendix but using our 
notations. 

From the Hamiltonian, Eq. (8), the equation of motion for the 
action variable I is 

dI/d9 = - aH/ab = 3D(21)3'2sin($) (24) 

where $J E 3b - ke (see p. 19). Note that for small D and small I, 
the action variable is almost a constant. The equation for phase is 

db/de = aH/aI = voo + (4ro)(21) + 3D/E cos($) 

so that dc$/de = 3[voo + (4ro)(21)] - k + 9Dd?? cos($) (25) 

He then identifies the quantity within the square bracket as the shifted 
tune v*. This is reasonable since he is considering cases for which I 
is almost constant. Now comes the most crucial statement on the defi- 
nition of the resonance width: 

"We define the width of the resonance, 2(Av)-, as the range 
of values of v* 
locked.ontQ it. 
compatible-with 

over which the particle motion will get - 
It is given by the range of v* which is 
d$/de = 0 allowing that cos($) varies in 

the range between -1 and +l." 

The underline is mine and I have again changed some notations. The 
phrase "get locked onto it" has often been used by other people as well 
but, to me, it is not entirely free of ambiguities. However, the con- 
dition d$/de = 0 for -1 4 cos($) 4 +1 is quite clear. Two extreme 
values of v* are 

COS(+) = -1, VI* = k/3 + 3D&-? , 

cos((p) = +1, v2* = k/3 - 3Diz 

so that 
I, +l* - v2*j= 6D=&? (26) 
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This definition of the resonance width does not contain the parameter 
r 

0 
of shear term and r. = 0 is quite acceptable. It is important 

to state here that Keil intended this definition to be used only for 
I << beam emittance and only for lowest-order resonances since, for 
other cases, the phase-independent term is much larger than phase- 
dependent terms so that there is no need to depart from the original 
definition of width by Chirikov. I am sure he would strongly object 
if someone used the definition (26) for I = beam emittance. With 
a full understanding of this, suppose we went ahead and did that, 

21 = beam emittance/n 

and, furthermore, 'equated this with the unstable fixed points, 

d? - dEu = ISvl/(3D) 

which is true for D2 >> r,18vI, we would get, from Eq. (26), 

But 16~1 E ]voo - k/31 here is precisely the resonance width defined 
in the previous section (beam emittance = 'rrR1 2 , see p. 3), that is, 
the one we have already discarded as meaningless as far as the over- 
lap criterion is concerned! (Remember my ambiguous attitude which 
is apparent on p. 16, "Still, I must confess . ...") The central 
question remains: What should one use as the resonance width in the 
Chirikov overlap criterion for I = beam emittance if the shear term 
is very small or absent? 

The mathematical tour de force shown in the report by Ruggiero, 8 

entitled "Two-Dimensional Resonance Effects due to a Localized Bi- 
Gaussian Charge Distribution", does not really encourage one to try 
to digest the entire work. If one skimmed over formulas and concen- 
trated on the major conclusions, one would be jolted by a statement 
regarding the sum of all resonance widths (p. 25): 

"It is not difficult to see, by inspecting (41), that all 
the contributions to S come only from the one-dimensional 
resonances, . . . . No explanation is offered, at the moment, 
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why the bi-dimensional resonances (p#O and q#O) do not 
contribute to the sum S." 

Nevertheless, I hope I understand his work enough to explain how he 
defines the resonance width. 

After deriving a suitable expression for the two-dimensional 
beam-beam field, he writes down three conditions for "fixed lines". 
This has already been mentioned in the previous section, p. 7. With 
action-angle variables (I,, JI,; I yt *y) , two are f or action variables, 

dIx/d8 = 0 and dIy/dB = 0 

and the third is for the phase X g p$x+q$y-rfJ I 

dX/dO = 0. 

The isolated resonance under consideration is of course pvx + qv = r. Y Two conditions for action variables are both satisfied by taking X = 
0 or 7T as usual. Two fixed lines, one with X = 0 in dX/de = 0 
and the other with X = IT, can be expressed in the form 

spq 
OJ) = f(U) (I x' Iy) I 

EPq 
1s) = f(S) (I 

x' Iy) 

where sPq = pvx + qvY - r and two superscripts (S) and (U) are 
used to designate what Ruggiero calls stable and unstable fixed lines, 
respectively. The crucial statement on the definition of the width 
comes on p. 10: 

"Let us consider the three-dimensional space with E 
on the abscissa and I , I on the other two axes. Pq 
Eqs. (32) and (33) re$res nt two surfaces in this g 
space. For fixed Ix and I we can go from one surface 
to another moving parallelYto the e -axis. 
tance AE 

"wid 8" f 
which separates the two Pqsurfaces 

The dis- 
defines 

the of the resonance at amplitude Ix and I 'I 
Y0 
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The most important consequence of this definition is that the width 
is totally independent of the shear term regardless of its strength. 
This is obvious since the shear term is unchanged by the value(P or 
IT) of phase X. ,, Ruggiero of course realizes that such a term exists 
in the beam-beam interaction. On p. 14 of his report, he states: 

"A resonance is described also by another parameter, 
the nonlinear tune shift. This is the distance of 
the center of the resonance from the linear tune. 
It is obtained by taking the arithmetic average of 
(32) and (33)." 

However, this quantity does not play any role in his use of the over- 
lap criterion. Let us apply his definition of width to our example 
of uncoupled resonance 3v = k. Two conditions for fixed points are, 
from Eqs. (24) and (25), 

sin($) = 0, (24 ’ ) 

(3voo - k) + 3*(4ro)(21) + SD421 cos(@) = 0. (25’ ) 

Since we are assuming voo < k/3, $=O gives unstable fixed points 
and $=IT stable fixed points, 

3.&(D) = -3*(4ro)(21) - 9DiE , 

3.&)(S) = -3*(4ro)(21) + 9tiZ . 

The difference of two quantities, Ruggiero's AE: ' Pq' lS 

I 3=dvtU) - 3.&JS)I = 18*D& 

In evaluating the sum of resonance widths, he of course divides this 
by P ( = 3 here),* 

resonance width = 6-D Jz 

&$ch is identical to Eq. (26), Keil's definition of width for cases 

* See p. 23 of ref. 8. 
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in which the shear term is either non-existent or much smaller than 
phase-dependent terms. The difference is significant enough to be 
stated again: Keil uses the definition (26) only when he cannot use 
the original Chirikov definition whereas Ruggiero uses it for all cases 
regardless of the strength of the shear term. I have not checked if 
this difference explains why, in Ruggiero's calculation, there is no 
contribution from coupled resonances to the sum of resonance widths. 
However, it is not at all surprising that resdlts obtained by Ruggiero 
are different from Keil's even qualitatively. Fig. 9 is a schematic 
presentation of Ruggiero's definition. The dotted horizontal line is 
an example of his resonance full-width. 

Fig. 9 

ro* 6v 
> 

> 0 
6V 

The article by Chaot from which I have already quoted a passage, 
is largely a review of various works on the beam-beam interaction and 
no novel definition of the resonance width is offered. It is interest- 
ing to see that he differentiates two types of width, one "in tune 
unit" and the other "in unit of a l/2 II where a is a quantity pro- 
portional to our I . The former is identical to Ruggiero's defini- 
tion and therefore independent of the shear term regardless of its 
strength. He seems to have a different physical picture in mind than 
Ruggiero's when he defines the "width in tune unit". After writing 
down the equation of motion for phase which is equivalent to our Eq. 
(25) r he simply regards the shear term as the tune shift and the 
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coefficient of phase-dependent term as the resonance half-width, 

"The effective tunes of a group of particles with a 
given amplitude a and arbitrary phase $ occupy 
a spread within F (Avjr around the detuned value v*." 

He then introduces "the width in unit of a l/2 II which seems to be 
the original Chirikov width. Although he says NSometimes it is more 
convenient to define a resonance width 6cP2 (in unit of a 1'2) to 
be the difference between . . . . ..I'. he does not tell us which defini- 
tion should be used for what purpose. As a matter of fact, he does 
not even mention the overlap criterion. 

* 
IV. Epilogue 

This report has turned out to be a compilation of troubled 
monologues. I am troubled by deft touches of verisimilitude which - 
appear from time to time in works dealing with nonlinear resonances, 
especially when they are not accompanied by solid substance. 
There could be many different conclusions drawn from this study by 
different readers. There is certainly a question of who is "right" 
and who is "wrong" but I cannot provide an answer to that question. 
In writing this report, it was never my intention to criticize what 
others have done. After all, I have nothing better to offer in place 
of their works either in the definition or in the usage of resonance 
width. Many people including Chirikov agree that the overlap criterion 
is simply an order-of-magnitude estimate and no more. At the same 
time, the fact that it is only an order-of-magnitude formula should 
not be regarded as a license for its careless treatment. 

* "a concluding section that rounds out the design of a literary 
work" - Webster's Dictionary - 
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